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Abstract. We consider the short-range-interaction disordered quantum spherical model with a
symmetrical binary±J -bond distribution on the Bethe lattice (with coordination numberz). The
system exhibits a quantum phase transition separating the spin-glass and disordered phases, where
the quantum effects are regulated by a parameter1 describing the kinetic energy. The model
admits, in the spherical limit, an exact solution both in the spin-glass phase and in the disordered
phase. The quantum dynamics is examined via various correlation functions on the infinite tree,
which are evaluated in closed form. A closed-form solution for the averaged free energy has
been obtained, and various thermodynamic functions are explicitly derived in the form of low-
temperature expansions.

1. Introduction

Systems exhibiting glassy phases constitute the main attempt of solid-state physics to address
the problem of collective disorder. The significance of these systems stems not only from
the importance of understanding particular materials; rather, it is believed that the glassy
ordering is of a qualitatively new kind, prototypical for a variety of disordered materials.
Classicalsystems exhibiting spin-glass behaviour have been intensively investigated [1], and
it has proved extremely useful to consider theinfinite-rangeSherrington–Kirkpatrick (SK)
model [2]. In the classical case, it is generally agreed that the statistical mechanics of the SK
Ising spin glass is essentially understood: the replica-symmetry-breaking (RSB) mean-field
solution due to Parisi [3] exhibits infinitely many low-temperature states whose properties are
consistent with simulations [4] (see reference [5] for a recent overview).

Recently, however, there has been growing experimental and theoretical interest in the
properties ofquantumdisordered systems. These include spin-glass (SG) problems and other
quantum transitions such as the metal–insulator [6] and the Bose glass [7] transitions. In
quantum spin glasses the spin-glass-ordered ground state may be destabilized by quantum fluc-
tuations, e.g. by varying the strength of the quantum fluctuations—for example, by changing
the concentrations of magnetic spins or itinerant electrons in magnetic systems or applying a
transverse magnetic field in an Ising dipolar system [8] LiHoxY1−xF4. The theoretical problems
for thequantumsystem are much less well understood, and the problem of determining the
equilibrium ground-state structure of quantum spin glasses remains an important question.
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Much work in the past has been confined to a large number ofinfinite-range-interaction
quantum spin glasses, where each spin interacts with every other spin. A celebrated example
is the Sherrington–Kirkpatrick (SK) spin-glass model [9] in a transverse field [10]. For
short-range-interactionquantumSG systems, very little information has been established
analytically, and what has been is mainly for one-dimensional quantum Ising chains [11], via
the phenomenological theory of droplet excitations [12] and by the renormalization group
(RG) method [13] (though with limited application for physically interesting dimensionalities
d < dc = 8 due to runaway RG flow to strong coupling ford < dc). Virtually all of the
available data for realistic short-range quantum SG models result from extensive Monte Carlo
simulations performed for two-dimensional [14] and three-dimensional [15] transverse-field
Ising systems.

Complementary to the numerical simulations are the fully solvable SG models, whose
importance lies in the fact that they can provide valuable insights and controlled guides for
developing our understanding as to what can happen in real systems. In this context, an
intriguing example is given by the Bethe lattice—i.e. an infinite homogeneous hierarchical
structure that greatly simplifies a number of problems of statistical physics.

Statistical models on the Bethe lattice have attracted considerable interest for a long time
because they admit a direct analytical approach for a number of problems that are otherwise
intractable on Euclidean lattices. In general, the study of a variety of problems on the Bethe
lattice has helped to develop our understanding of a number of physical issues including self-
avoiding polymers [16], random resistor networks [17], percolation [18], and classical spin
glasses on random graphs (see reference [19]) to mention but a few. The physical relevance of
these results is that the Bethe lattice is thought to represent some mean-field limit of Euclidean
lattices of very large dimensions.

In spite of there having been a number of papers on the mean-field SK-type models of
quantum spin glasses, the connection between the mean-field models and short-range models
remains obscure, partially due to the absence of a notion of distance in the infinite-range-
interaction Sherrington–Kirkpatrick model, which makes it impossible to define non-trivial
site-dependent correlation functions. In contrast, the coordination number of a Bethe lattice
is finite, there is an obvious notion of distance as measured along the tree, and one can thus
consider correlation functions as a function of distance, at least by rough analogy with short-
range systems.

In this paper we report analytic results for thequantumrealization of theshort-range-
interaction spin glass in the form of the disordered±J quantized spherical model formulated
on the Bethe lattice with constant coordinationz. We define genuine nearest-neighbour random
couplings, resulting in non-trivial correlations between spins. We concentrate our attention on
the important aspect of the quantum SG transition: various inherentdynamicalcorrelations
like the local response and higher-order site-dependent dynamic spin correlations, which
typically signal SG transition, are evaluated in closed form. Furthermore, we examine in
detail the thermodynamic properties of the model. Some preliminary results on these issues
were reported in our recent work [20].

The outline of the remainder of the paper is as follows. In section 2 we begin by setting up
the spherical model of the quantum SG on the Bethe lattice and the corresponding Euclidean
action; this functional is minimized to yield the mean-field theory. In section 3 the SG order
parameter and various susceptibilities are discussed. We show that in the formal limit where
the coordination number of the lattice tends to infinity, the solution of the model becomes that
of the infinite-range-interaction SK-type spherical SG. The thermodynamics of the model is
developed in section 4 in terms of low-temperature expansions for various thermodynamic
functions. Finally, in section 5 we summarize the conclusions to be drawn from our work.
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Some supplementary material regarding the connection between spherical and large-M vector
models and the classical limit of the spherical SG models appear in the appendices.

2. The model Hamiltonian

To capture the essential physics of the problem, we consider a quantized spherical model on
the Bethe lattice given by the Hamiltonian

H = 1

2

∑
i

52
i −

∑
i<j

Jij σiσj (1)

where the variablesσi (i = 1, . . . , N) are associated with spin degrees of freedom (located on
the Bethe lattice with coordinationz) and canonically conjugated to the ‘momentum’ operators
5i such that [σi,5j ] = iδij . In analogy to the transverse-field Ising SG, the coupling1

regulates the strength of the quantum fluctuations (1→ 0 corresponds to the classical limit).
Furthermore, theJij are mutually uncorrelated nearest-neighbour exchange constants which
we assume to be selected with the probability

P(Jij ) = 1

2

[
δ(Jij − J ) + δ(Jij + J )

]
. (2)

Finally, we supplement equation (1) with the mean-spherical constraint〈〈
N−1

N∑
i=1

σ 2
i

〉
T

〉
av

= 1 (3)

where〈· · ·〉T and〈· · ·〉av denote the ensemble and random averages, respectively.

2.1. Euclidean action and the saddle-point condition

To establish the framework for our analytical task, we express the partition functionZ =
Tr e−H/kBT using the functional integral in the Matsubara ‘imaginary-time’τ -formulation
(06 τ 6 1/kBT ≡ β, with T being the temperature). We obtain

f = − lim
N→∞

1

βN
〈lnZN({Jij })〉av (4)

where

ZN({Jij }) =
∫ ∏

i

[Dσi(τ )] δ

( N∑
i=1

σ 2
i (τ )−N

)
exp

(
−
∫ β

0
dτ Sσ (τ )

)
(5)

with the Euclidean action

Sσ (τ ) = 1

21

∑
i

(
∂σi

∂τ

)2

−
∑
i<j

Jij σi(τ )σj (τ ). (6)

The convenient way to enforce the spherical constraint is to use the functional analogue of the
δ-function representation:

δ

( N∑
i=1

σ 2
i (τ )−N

)
=
∫ +i∞

−i∞

[
Dv(τ)

2π i

]
exp

[∫ β

0
dτ v(τ )

( N∑
i=1

σ 2
i (τ )−N

)]
(7)

so that we obtain

ZN({Jij }) =
∫ ∏

i

[Dσi(τ )] exp

(
−
∫ β

0
dτ Nv(τ)

)
4N(β, {Jij }, v) (8)
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where

4N(β, {Jij }, v) = exp

{
−
∫ β

0
dτ

[
Sσ (τ )− v(τ)

N∑
i=1

σ 2
i (τ )

]}
(9)

which introduces the Lagrange multiplierv(τ), adding an additional quadratic term (inσ -
fields) to the action (6) and allowing us to performN independent traces overσi . In the
thermodynamic limitN →∞, the method of steepest descents is exact and the saddle point
v(τ) ≡ v0 (independent ofτ ) will satisfy

1= lim
N→∞

∂

∂v
〈ln4N(β, {Jij }, v)〉av

∣∣∣∣
v(τ)≡v0

(10)

or explicitly

1= lim
N→∞

β−1
∑
`

〈[
1

(ω2
`/1 + 2v0)1N − J

]
ii

〉
av

(11)

with ω` = 2π`/β (` = 0,±1,±2, . . .) being the (Bose) Matsubara frequencies. Thus the
spherical limit for dirty phase transition produces a random-matrix inversion problem [21]
which, in general, is not analytically tractable, forcing numerical implementation [22].
Fortunately, the Bethe lattice topology provides a unique setting that makes explicit progress
possible. To proceed, we diagonalize the random symmetric matrixJij for N spins∑

i

Jijφ
λ
j = Jλφλj (12)

with the real orthonormal eigenvectorsφλi . Here,λ = 1, . . . , N andJλ is theλth eigenvalue.
Associated with the eigenvalue spectrum is the averaged integrated density of states (DOS):

ρ(κ) = − 1

π
Im〈G(κ + i0+)〉av (13)

where

G(κ) = lim
N→∞

N−1
∑
λ

(κ − Jλ)−1 (14)

is the (unaveraged) Green function for the Bethe lattice leading to the averaged integrated DOS
given by [20]

ρ(κ) = 2(z− 1)z
√
J 2
c − κ22(1− κ2/J 2

c )

π [(z− 2)2κ2 + z2(J 2
c − κ2)]

(15)

where2(x) stands for the unit step function andJc = 2J
√
z− 1 is the upper limit of the

eigenvalue spectrum. In the spherical model the Lagrange multiplier 2v0 ‘sticks’ at that value
at criticality and stays constant throughout the whole low-temperature phase; also,

1= P
∫ Jc

−Jc
dκ ρ(κ)

1

β

∑
ω`

1

ω2
`/1 + 2v0 − κ

(16)

and

1=
√
1

2
P
∫ Jc

−Jc
dκ ρ(κ)

coth(β
√
1(2v0 − κ)/2)√
2v0 − κ

(17)

andP denotes the principal part of the integral.
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3. The order parameter and observables

3.1. The Edwards–Anderson order parameter

The quantity of interest which captures the onset of the SG phase transition is the Edwards–
Anderson (EA) order parameter

qEA ≡ 〈〈σi〉2T 〉av. (18)

Within our quantum spherical description,

qEA = 1− P
∫ Jc

−Jc
dκ ρ(κ)

1

β

∑
ω`

1

ω2
`/1 + 2v0 − κ

(19)

and, summing up Matsubara frequencies,

qEA = 1−
√
1

2
P
∫ Jc

−Jc
dκ ρ(κ)

coth(β
√
1(2v0 − κ)/2)√
2v0 − κ

. (20)

SettingqEA = 0 gives the critical phase boundary (see figure 1).
At thezero-temperaturequantum critical point,qEA is given by

qEA(T = 0,1) = 1− α(z)
√
1

J
(21)

where

α(z) = − 1

8π

√
z + 2
√
z− 1 ln

(
2(z + 2

√
z− 1)

z− 2
√
z− 1

− 4 4
√
z− 1

√
z + 2
√
z− 1

z− 2
√
z− 1

− 1

)
− 1

4π

√
z− 2
√
z− 1 arctan

(
2 4
√
z− 1√

z− 2
√
z− 1

)
. (22)

Equation (21) implies the zero-temperature critical value1c/J = α−2(z). Unlike in the case
of thed = 1 disordered transverse Ising chain [11], we found no evidence forT = 0 phase
transition at a finitenon-zero1 in one dimension, because limz→2 α(z) = ∞. Note that

0.5 1 1.5
0

2

4

6

8

10

0

Spin
Glass

Para

a)

b)

c)
∆ /J

k
B

T/J

Figure 1. The1–T phase diagram of the quantum spherical±J model on the Bethe lattice for
several coordination numbersz: (a) z = 3, (b) z = 4 and (c)z = 5; the solid lines separate the
spin-glass (SG) from the paramagnetic (PM) region.



812 T K Kopéc and K D Usadel

this conclusion is consistent with recent numerical findings within the disordered quantum
spherical model on the two-dimensional regular lattice [22]. In the opposite limit of infinite
connectivity (z → ∞), we recover—according to the central-limit theorem—the random
Gaussian-distributed infinite-range-interaction spherical spin-glass modes (see appendix A).

3.2. Local susceptibilities

It is also helpful to introduce here a number of correlation functions of the order parameter.
Consider now the two-point correlation function

gij (τ ) = 〈σi(τ )σj (0)〉T . (23)

The disorder average of this quantity

Gij (τ ) = 〈〈σi(τ )σj (0)〉T 〉av (24)

vanishes for all pairsij unlessi = j since any configuration of bonds{Jij } has a partner{Jij }′
such thatgij (τ, {Jij }) = −gij (τ, {Jij }′). Therefore,Gij (τ ) = G(τ)δij , and using the Fourier
transform

G(τ) = β−1
∑
`

eiω`τG(ω`) (25)

we obtain

G(ω`) = 2(z− 1)

J 2
c z

2 − 4(z− 1)(2v0 + ω2
`/1)

2

×
(z− 2)

(
2v0 +

ω2
`

1

)
− z

√(
2v0 +

ω2
`

1

)2

− J 2
c

 . (26)

The static susceptibility is given byχ ≡ G(ω` = 0). Forz > 3, χ = [2(z − 1)/(z − 2)]J−1
c

at criticality and everywhere in the low-temperature phase. The temperature behaviour of the

0
1

2
3

0.5

0.75

1

1.25

kBT/J

Jχ

z=3

z=4

z=5
Figure 2. The temperature dependence of the local static
susceptibilityχ = χ(ω = 0) for 1 = 4J .
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2 4 6 8 10

-1

0

1

-1

0

1

-1

0

1

0

Jχ
'(ω

)

ω / J

a)

b)

c)

Figure 3. The real part of the dynamic local susceptibility at1 = 1c
andT = 0 for (a)z = 3, (b)z = 4 and (c)z = 5.

static susceptibility is given in figure 2. For the real part of the dynamic local susceptibility
χ ′(ω) we obtain

χ ′(ω) =



2(z− 1)
[
(z− 2)(2v0 − ω2/1) + z

√
(2v0 − ω2/1− Jc)(2v0 − ω2/1 + Jc)

]
J 2
c z

2 − 4(z− 1)(2v0 − ω2/1)2

for ω2 > 1(Jc + 2v0)

2(z− 1)(z− 2)(2v0 − ω2/1)

J 2
c z

2 − 4(z− 1)(2v0 − ω2/1)2

for 1(2v0 − Jc) 6 ω2 6 1(Jc + 2v0)

2(z− 1)
[
(z− 2)(2v0 − ω2/1)− z

√
(2v0 − ω2/1− Jc)(2v0 − ω2/1 + Jc)

]
J 2
c z

2 − 4(z− 1)(2v0 − ω2/1)2

for ω2 < 1(2v0 − Jc).

(27)

The frequency dependence ofχ ′(ω) at T = 0 and various coordination numbers is given in
figure 3. We consider next the dissipative part of the local dynamic susceptibility

χ ′′(ω) = Im[G(ω`)|iω`→ω+i0+ ] (28)

which is a quantity often measured in neutron scattering experiments:

χ ′′(ω) = −sgn(ω)
z

2
2

(
1−

∣∣∣∣2v0

Jc
− ω2

1Jc

∣∣∣∣)
×

√
(−2v0 + ω2/1 + Jc)(2v0 − ω2/1 + Jc)

(ω2/1− 2v0 + Jcz/[2
√
z− 1])(ω2/1 + 2v0 − Jcz/[2

√
z− 1])

. (29)
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Figure 4. The spectral densityχ ′′(ω) atT = 0, for z = 3: at (a)1 = 1c and (b)1 = 9J > 1c;
for z = 4: with (c) and (d) corresponding to (a) and (b), respectively; forz = 5: at (e)1 = 1c
and (f )1 = 11J .

The resulting energy spectrum is gapless at the critical point and throughout the whole low-
temperature phase; the gap develops a form of criticality generic for quantum SGs with non-
degenerate local ground states (see figure 4). Our rigorous result shows the absence of the
ω → 0 divergence inχ ′′(ω) at criticality for z > 3 anticipated on the basis of a finite-size
scaling argument [22].

3.3. Spin-glass susceptibility

Finally, we comment on a quantity intimately related to the SG ordering, i.e. the quantum
mechanicalfour-spin correlation function:

0ij (τ1− τ2, τ3− τ4) =
[〈σi(τ1)σj (τ2)〉〈σi(τ3)σj (τ4)〉

]
av

= β−2
∑
ω`,ν`

eiω`(τ1−τ2)+iν`(τ3−τ4)[gij (ω`, {Jij })gij (ν`, {Jij })]av. (30)

The correlator (30) is linked to an important quantity, namely the EA spin-glass susceptibility

χs =
∑
ij

∫ β

0
dτ dτ ′ 0ij (τ, τ ′) (31)

which directly probes the onset of the SG transition. The exact, closed form of the correlation
function (30) on the Bethe lattice then becomes [20]

0(ω`, ν`) = G(ω`)G(ν`)
[

1 +D(ω`)D(ν`)

1− (z− 1)D(ω`)D(ν`)

]
(32)

where

D(ω`) = 1

Jc
√
z− 1

(2v0 +
ω2
`

1

)√(
2v0 +

ω2
`

1

)2

− J 2
c

 . (33)
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Hence, from equation (32) and the saddle-point condition, it follows that the static SG
susceptibilityχs ≡ 0(ω` = 0, ν` = 0) diverges at the critical point as well as throughout the
whole low-temperature phase. Close to the zero-temperature critical point the imaginary part
of the dynamic SG susceptibilityχ ′′s (ω) ≡ Im[0(ω`, ω`)|iω`→ω+i0+ ] diverges asχ ′′s (ω) ∼ 1/ω.
The behaviour of the dissipative part of the dynamic SG susceptibility is given in figure 5:

χ ′′s (ω, ω) = sgn(ω)2

(
1−

∣∣∣∣2v0

Jc
− ω2

1Jc

∣∣∣∣)
× 2(z− 1)z(2v0 − ω2/1)

[
4(z− 1)(2v0 − ω2/1)2 + J 2

c z
2 − 8J 2

c (z− 1)
]√

J 2
c − (2v0 − ω2/1)2

[
J 2
c z

2 − 4(z− 1)(2v0 − ω2/1)2
]2 .

(34)

Consider now the situation in the vicinity of the zero-temperature paramagnetic–SG transition.
Raising the temperature at1 = 1c(T = 0) one enters the QC regime in which the physics is
dominated by theT = 0 quantum critical point. In this regime, for the dissipative part of the
dynamic SG susceptibility we obtain

χ ′′s (T ,1c(T = 0)) ∼ 1

T

[
ln

(
constant

T

)]−1/2

. (35)

Here the temperature is the most significant energy scale and the system ‘feels’ thefinitevalue
of T before becoming sensitive to the deviation of1 from1c(T = 0) [13].

2 4 6 8 10

-1

0

1

-1

0

1

-1

0

1

0

ω / J

a)

b)

c)

(ω
)

χ"
J2

s

Figure 5. The imaginary part of the dynamic SG susceptibility
χ ′′s (ω) at1 = 1c andT = 0 for (a)z = 3, (b) z = 4 and (c)
z = 5.

4. Thermodynamic functions

4.1. The free energy

Returning to the partition function represented by equation (5) it is evident that the free energy
will be given by the dominant saddle-point solution (11) in the thermodynamic(N →∞) and
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spherical limits, allowing the exact evaluation of the disorder-averaged free-energy density
fav = [F/MN ]av where

F = − 1

β

〈
ln detN

{[(
− 1

1

∂2

∂τ 2
+ 2v0

)
1N − J

]/[(
− 1

1

∂2

∂τ 2

)
1N

]}〉
av

− v0. (36)

Proceeding along similar lines to section 2, one finds the exact form of the averaged free energy
in the spherical limit:

f = 1

β
P
∫ Jc

−Jc
dκ ρ(κ) ln

[
2 sinh

(
1

2
β
√

21v0 − κ1
)]
− v0 (37)

with 2v0 = Jc in the SG phase. We are now in position to calculate various thermodynamic
functions within the spin-glass phase. The classical case of vanishing1 is discussed separately,
in appendix B.

4.2. The entropy

In any theoretical description of spin glasses the entropy defined by

S = kBβ2∂f

∂β
(38)

represents the thermodynamic quantity of primary interest. Using relation (37) one gets

S = 16kB
π

∫ µ

0
dx

(z− 1)z
√
µ2 − x2 [x cothx − ln(2 sinhx)]

µ4(z− 2)2 − 16x2(x − µ)(x +µ)(z− 1)
(39)

where we used the fact thatv0 = J = constant in the spin-glass phase andµ = β
√
J1

is a dimensionless parameter introduced in order to allow us to conveniently analyse various
physical limits. The low-temperature behaviour (µ→∞) of the entropy in the quantum case
is described by the low-temperature expansion

S = 8π3(z− 1)zA1(z)

45µ3(z− 2)2
− 4π5(z− 1)zA2(z)

105µ5(z− 2)4
− π

7(z− 1)zA3(z)

105µ7(z− 2)6

− 5π9(z− 1)zA4(z)

594µ9(z− 2)8
− 691π11(z− 1)zA5(z)

240 240µ11(z− 2)10
+ O

(
1

µ13

)
(40)

where the coefficientsAk(z) are given in table 1. The relation (40) implies that for1 6= 0 the
entropy vanishes asT 3 with a positive coefficient.

4.3. The specific heat

The specific heat at constant volume is defined as

C = −kBβ2 ∂2

∂β2
(βf ). (41)

Performing the differentiation we obtain

C = 16kB
π

∫ µ

0
dx

(z− 1)zx4
√
µ2 − x2 sinh−2(x)

µ4(z− 2)2 − 16x2(x − µ)(x +µ)(z− 1)
. (42)

In the low-temperature limit (µ→∞) the following expansion holds:

C/kB = 8π3(z− 1)zA1(z)

15µ3(z− 2)2
− 4π5(z− 1)zA2(z)

21µ5(z− 2)4
− π

7(z− 1)zA3(z)

15µ7(z− 2)6

− 5π9(z− 1)zA4(z)

66µ9(z− 2)8
− 691π11(z− 1)zA5(z)

21 840µ11(z− 2)10
+ O

(
1

µ13

)
(43)
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Table 1. Coefficients for the low-temperature expansion of thermodynamic functions on the Bethe
lattice.

k Ak(z)

1 1
2 z2 − 36z + 36
3 z4 + 184z3 − 2984z2 + 5600z− 2800
4 z6 − 108z5 + 11 164z4 − 130 208z3 + 335 344z2 − 324 288z + 10 8096
5 5z8 − 208z7 − 59 216z6 + 2437 952z5 − 23 718 944z4 + 73 766 144z3 − 102 532 352z2

+ 66 808 832z− 16 702 208

which implies that the specific heat vanishes asT 3 for T → 0. This is in contrast to the
classical case of the classical spherical spin glass, whereC remains constant as the temperature
vanishes [24].

4.4. The internal energy

For the internal energy defined as

U = ∂

∂β
(βf ) (44)

we obtain the general relation

U = 16kBT

π

∫ µ

0
dx

(z− 1)z
√
µ2 − x2x3 cothx

µ4(z− 2)2 − 16x2(x − µ)(x +µ)(z− 1)
(45)

and in the limitµ→∞ the internal energy is described by

βU = 2π3(z− 1)zA1(z)

15µ3(z− 2)2
− 2π5(z− 1)zA2(z)

63µ5(z− 2)4
− π

7(z− 1)zA3(z)

120µ7(z− 2)6

− π
9(z− 1)zA4(z)

132µ9(z− 2)8
− 691π11(z− 1)zA5(z)

262 080µ11(z− 2)10
+ O

(
1

µ13

)
(46)

again exhibitingT 3-behaviour at low temperatures.

5. Conclusions

This paper has introduced and analysed the simplest model quantum SG with short-ranged
interactions which exhibits a quantum phase transition: the±J spherical quantum spin glass
on the Bethe lattice. The model contained only bosonic quantum rotor degrees of freedom and
offers the simplest realization of the combined effects of randomness and quantum mechanics.
We were able to work at any value of the temperature, includingT = 0, without resorting
to approximations. Basic quantities encoding the quantum SG dynamics and ordering, such
as the order parameter, and dynamic two-point and higher-order susceptibilities, have been
evaluated exactly. The results are summarized in the phase diagram and the figures (figures 1–
5). Unlike in the case for thed = 1 disordered transverse Ising chain, we found no evidence for
a zero-temperature phase transition—a conclusion which is in agreement with recent numerical
findings for the disordered quantum spherical model on the two-dimensional regular lattice.
In contrast, in the limit of infinite coordination we recover the usual mean-field results for a
spherical quantum SG with infinite-range interactions. From our observation that thelocal
structures of a Bethe lattice and a physical large-z lattice with finite d are similar (compare
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with the Bethe–Peierls approach), we expect that the behaviour on the infinite tree will share
some features with real finite-dimensional quantum SG systems, at least on length scales short
compared to the scale at which loops will typically start to form in a random walk on a Euclidean
d-dimensional lattice.
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Appendix A. The limit of infinite lattice connectivity

Let us examine our results in the opposite limit of infinite connectivity; substitutingJ = J̃ /√z
and lettingz→∞ in equation (13) we get the limiting distribution

ρ∞(ε) = (2πJ̃ 2)−1
√
ε2 − J̃ 22(2J̃ − |ε|). (A.1)

Thus, for a fully connected lattice, we recover the famous semi-circular spectrum of Gaussian-
distributedJij with zero mean and variancẽJ/

√
N commonly used for the infinite-range SK

spin glasses. Because basic results pertinent to these system (both classical and quantum) are
known, we can have an independent consistency check of our calculations. From equation (B.9)
we obtain

qEA = 1− kBT /J̃ (A.2)

andkBTc/J̃ = 1 in agreement with the finding for a classical spherical infinite-ranged SG [24].
Similarly, for the quantum case, from equations (21) and (22) we get

lim
z→∞

1√
zf 2(z)

= 9π2

64
(A.3)

and consequently

1c/J̃ = lim
z→∞α

−2(z)/
√
z = 9π2/16. (A.4)

We thus recover theT = 0 critical value of1 for the large-M component SG of quantum
rotors with SK-type interactions [25].

Appendix B. The classical limit

In the limit of the vanishing of the parameter1, quantum effects are expected to become
irrelevant and we should recover the classical solution for the spherical model [24]. In this
limit, the path integral over positions and ‘momenta’ factorizes giving

Z
classical limit−→

∫ +∞

−∞

∏
i

d5i

2π
e−βT (5)

∫ +∞

−∞

∏
i

dσi δ

( N∑
i=1

σ 2
i (τ )−N

)
e−βV (σ)

= 1√
2πβ1

Zcl (B.1)

whereZcl is denotes the classical statistical sum of the classical spherical SG model [24]:

Zcl =
∫ +∞

−∞

∏
i

dσi δ

( N∑
i=1

σ 2
i (τ )−N

)
e−βV (σ) (B.2)
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and

T (5) = 1

21

∑
i

(
∂σi

∂τ

)2

V (σ) = −
∑
i<j

Jij σiσj .
(B.3)

From the relation (B.1) it follows that the classical free energy of the classical spherical model
should be recovered from the limit

fcl = lim
1→0

[
f (1, v0)− 1

β
ln(
√

2πβ1)

]
(B.4)

wheref (1, v0) is the free energy for the quantum spherical SG model on the Bethe lattice
(37). Explicitly one has

fcl = 1

β

[
1

2

∫ Jc

−Jc
ρ(κ) ln

(
w0 − 1

2
βκ

)
dκ − w0 − 1

2
ln π

]
(B.5)

where

w0 = lim
1→0

βv0(β,1). (B.6)

The constraint equation is

1=
2(z− 1)

(
2w0(z− 2)−

√
4w2

0 − (βJc)2z
)

β2J 2
c z

2 − 16w2
0z + 16w2

0

(B.7)

w0 =


(√

4β2J 2 + 1− 1
)
z

4
+

1

2
for kBT > J

√
z− 2

βJ
√
z− 1 for kBT < J

√
z− 2

(B.8)

so we can identify the critical temperaturekBTc = J
√
z− 2. Specializing to the classical limit

(1→ 0) we determine

qEA(T ,1 = 0) = 1−
√
z− 1

z− 2

kBT

J
(B.9)

which vanishes at the classical critical temperaturekBT /J = (z − 2)/
√
z− 1. The local

susceptibility in turn becomes

χcl =


√
z− 1

J (z− 2)
for T < Tc

1

kBT
for T > Tc.

(B.10)

Finally for the free energy we obtain

fcl = − (z− 2)

8β
ln|β2J 2

c z
2 − 16w2

0z + 16w2
0| −

w0

β
− ln π

2β
+
(z− 2)

8β

× ln

−z|βJcSz + 4w0z− 4w0| + βJc(z− 2)2S +
√

4w2
0 − (βJc)2Z

z|βJcSz− 4w0z + 4w0| + βJc(z− 2)2S +
√

4w2
0 − (βJc)2Z


− (z− 2)

8β
ln

(∣∣βJc√z− 1z + 4w0z− 4w0

∣∣∣∣βJc√z− 1z− 4w0z + 4w0

∣∣
)

− z

4β

[
ln(z− 1)− ln

(√
4w2

0 − (βJc)2 + 2w0
)

+ 3 ln 2

]
(B.11)
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where, in the second line, we have used

S = √z− 1 and Z = (2z2 − 6z + 4)

(simply to improve the layout). The resulting internal energy is

U = 1

2β
− J√z− 1 (B.12)

whereas the specific heat is constant,C = kB/2, within the glass phase and the entropy diverges
logarithmically:

S = −kB
2

ln(T /J ).

However, this is not unexpected, since the classical spherical spin-glass model displays the
same pathology [24].
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